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SECTION 1 - INTRODUCTION

While DOS/65 can use controllers other than the IEEE Standard 696, Tarbell controller, 
use of the IEEE Standard 696 bus is a very low cost approach. In any event the 6502 to 
IEEE Standard 696 interface is easily established and the peculiar changes required for 
the floppy interface are easy. The following discussion assumes that the user does not 
already have a KIMSI or BETSI and thus must build the interface from scratch. Those 
users with existing interfaces should note the approach used and consider whether 
modifications are required to your interfaces.

NOTE  
This document uses an asterisk as a suffix to denote an inverted signal. For 
example GATE* means that the signal GATE* is at the logic zero level (0V 
for TTL) when GATE is true.
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SECTION 2 - ADDRESS BUS

The address bus interface is the simplistic of all. If no DMA capability is needed, than the 
interface shown in Figure 2-1 will be perfectly adequate as long as any IEEE Standard 
696 I/O boards used only the low eight address lines as the port address. Luckily, the 
Tarbell controller falls in that category. The addition of DMA capability will require that the 
control signals for the buffers be lifted from ground and tied to an appropriate control bus 
line as shown in Figure 2-1. If you do not foresee a need for DMA then do not even 
consider it. The extra complexity is not big but in today's world every cent counts and 
more importantly every wire-wrap (or whatever) pin is just one more chance to make a 
mistake. All further discussion will assume DMA is not needed.

The octal buffers shown (81LS95) were selected because of the convenience of the 20 
pin package. Other buffers such as the many members of 8097/8T97/74367 family could 
also be used and may provide better bus drive power than the 81LS95's provide. I have, 
however, experienced no problems in driving my terminated 18 slot Vector Graphic 
mother board even when loaded with 12 cards (5-RAM (56K), 1-ROM, 1-Video (80 x 24), 
1-Programmable Character Generator, 2-Tarbell Controller, 1-DAC, 1-I/O).

The restriction that all IEEE Standard 696 I/O cards use only the lower eight address bits 
to select the I/O port is a real problem. For those of you not familiar with the 8080, it has 
a separate 256 port I/O address space in addition to the 64K memory space. As will be 
seen later, the control signals tell the cards on the bus which address space is being 
used at any one time. The problem is not that there is a separate address space - that we 
can handle with the control signal interface. The problem stems from the fact that when 
operating in the I/O space the 8080 places the port number on both the upper and lower 
8 bits of the address bus. The users of the IEEE Standard 696 bus are thus free to pick 
either the high or low 8 bits (or a combination) of the address bus when decoding the port 
address on a peripheral card. The fix for this problem for the 6502 user is simple. Since 
we will establish a "separate" I/O space in our interface (to be discussed in the control 
section) it is a simple matter to echo the "port number" on the low and high 8 bits of the 
IEEE Standard 696 address bus whenever the I/O space is addressed. The circuitry for 
this modification to the address buffering scheme is shown in Figure 2-3. In this figure, as 
in Figure 2-1, each buffer really represents an 8 bit buffer.

The two signals IO and IO* are generated in the control interface and will be discussed 
later. They are complementary and serve to drive the A8 through A15 IEEE Standard 696 
bus lives with 6502 A0 through A7 for I/O operations and with 6502 A8 through A15 for 
memory operations.
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Figure 2-1. Simple 6502 to IEEE Standard 696 Address Bus Interface

Figure 2-2. Typical Address DMA Modification

One small additional point. The control interface will use the A8 through A15 address 
signals to decode the I/O space and to control data bus buffer enabling. Those signals 
are the buffered outputs of the 6502 not the IEEE Standard 696 A8 through A15 bus 
signals. Thus in Figure 2-3 they are the output of the buffer labeled with an asterisk (*).
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Figure 2-3. 6502 to IEEE Standard 696 Address Bus Interface
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SECTION 3 - DATA BUS

The data bus interface is no more complex than the address bus interface but can be a 
bit tricky. In its simplest form the interface looks like Figure 3-1. In most cases that 
approach will not work. The reason is simple. Figure 3-1 assumes that any 6502 read 
operation is a read from the IEEE Standard 696 bus and hence the octal buffer from the 
unidirectional, IEEE Standard 696 DI bus is enabled. That is true if and only if no device 
other than the 6502 CPU is connected to the left side of the interface. If the left side of 
the interface is connected to a more complex system, such as the expansion connector 
of a SYM-1 or KIM-1, then conflicts will result. The reason for the conflicts is simple. 
Those systems have either memory or I/O devices mounted on the CPU board which 
must be addressed and read from. If one attempts to read from, for example, the 
SUPERMON ROM on a SYM when the circuitry of Figure 3-1 is used, the DI buffer will 
be enabled and the 6502 data bus thrown into chaos. The solution is to only enable the 
DI buffer when no conflicts exist. The buffer modification required is shown in Figure 3-2 
and the control logic needed is discussed in the following section.

Note that as was the case for the address bus, DMA compatibility has not been provided.

 Figure 3-1. Simple 6502 to IEEE Standard 696 Data Bus Interface
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Figure 3-2. 6502 to IEEE Standard 696 Data Bus Interface
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SECTION 4 - CONTROL BUS

Now the fun part. First, however, a significant disclaimer is in order. No single 6502 to 
IEEE Standard 696 control bus interface will enable one to use all IEEE Standard 696 
cards without modification.

In some cases no practical modifications will solve the problem either since the offending 
card may have been designed specifically for the somewhat unique (at least from a 
6502/6800 point of view) 8080 timing characteristics. What does work? All I can point to 
is my experience which says that the following cards worked with no modifications.

● Vector Graphic 8K RAM
● Godbout 16K ECONORAM IV
● Tarbell FDI (but not the bootstrap)
● SSM PB-1 ROM Board and Programmer (Read Only-cannot program)

Minor modifications to the following cards were required to get them working. Interestingly 
some of those mods were also necessary to get the cards to work reliably with my Ithaca 
Audio Z-80 CPU board - but that is another story!

 Objective Design VDI (80 x 24) video board

 Objective Design PCG

While one might consider use of special timing circuits to more closely match the 8080 
timing, such an approach is probably excessively complex. If one-shots are used rather 
than synchronous logic, the circuitry may also be somewhat touchy from a noise or 
adjustment point of view. Synchronous designs are clean but usually require a higher 
frequency clock (typically 2 to 16 times the CPU clock) which just is not available on 
many systems.

Now that the disclaimer is out in the open let's face the problem. The most significant 
aspect of the problem is that the IEEE Standard 696 bus uses very many control signals - 
many more in fact than it needs to use. Like the I/O port problem discussed above, the 
large number of control signals available left the IEEE Standard 696 card designer free to 
pick and choose. As a consequence, our interface must generate as many as possible. 
First let me divide the signals into the following categories:

 1. Must Have
 2. Probably Must Have
 3. Probably Do Not Need
 4. Do Not Need

As Table 4-1 indicates, the number of control signals which probably are needed is much 
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more than the usual 6502 1, 2, R/W, SYNC, RDY, IRQ*, and NMI* signals.

The logic used to generate the majority of the control signals is shown in
Figure 4-1 and Figure 4-2.

The logic equations which describe those signals are:

IEEE Standard 696 6502
PDBIN R/W

Φ2 Φ2
PWR* (Φ2 and R/W*)*

MWRITE Φ2 and R/W* and IO*
SINP R/W and IO
SOUT Φ2 and R/W* and IO

SMEMR R/W and IO*

The only confusing aspect of those equations should be what the variables IO and IO* 
mean. As mentioned earlier, these two signals are complementary. IO is true when the 
IEEE Standard 696 I/O space is to be addressed. It is generated by assigning a fixed 
page of 256 bytes within the 64K address space of the 6502 as an I/O block. Thus if any 
address within that block is addressed by the 6502, the IEEE Standard 696 bus is told to 
connect the I/O address space to the bus for input (SINP) or output (SOUT). In general 
that page should be located as high as possible or in some otherwise unused corner of 
the 6502 address space. In my home built system I use E000 through E0FF which leaves 
56K of address space below that page for contiguous memory.

The method of generation of IO and IO* is relatively simple. One approach which can be 
used is shown in Figure 4-3. It has the advantage of only using two IC's and is easily 
reconfigured to accommodate relocation of the I/O block. The two magnitude decoders 
detect the page number (in this case $E0) assigned as the IEEE Standard 696 I/O page. 
Changing the page only requires changing of the comparison value. If a dip plug is used 
or if wire-wrap connections are used the changes are very easy. Remember that the 
address inputs are the buffered 6502 outputs, not the signals on the IEEE Standard 696 
bus.

The next group of signals to be discussed are the reset or reset-like signals. Most IEEE 
Standard 696 boards either do not use these or use only one of the three. The Tarbell 
controller is unique since it uses all three. The circuitry in Figure 4-4 should work if your 
systems generates a good clean
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TABLE 4-1. IEEE Standard 696 CONTROL SIGNALS

SIGNAL PIN MUST HAVE PROBABLY 
MUST HAVE

PROBABLY DO 
NOT NEED DO NOT NEED

XRDY 3 X or PRDY/72

VI0 4 X

VI1 5 X

VI2 6 X

VI3 7 X

VI4 8 X

VI5 9 X

VI6 10 X

VI7 11 X

STADSB* 18 X (DMA ONLY)

CCDSB” 19 X (DMA ONLY)

UNPROT 20 X

SS 21 X

ADDDSB* 22 X (DMA ONLY)

DODSB* 23 X (DMA ONLY)

Φ2 24 X

Φ1 25 X (TIE TO +5V)

PHLDA 26 X

PWAIT 27 X

PINTE 28 X

SM1 44 X (SYNC)

SOUT 45 X

SINP 46 X

SMEMR 47 X

SHLTA 48 X

CLOCK 49 X

SSWDSB* 53 X

EXTCLR* 54 X

SXTRQ* 59 X

SXTN* 61 X

RFSH 66 X

PHANTOM* 67 X

MWRITE 68 X
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TABLE 4-1. IEEE Standard 696 CONTROL SIGNALS

SIGNAL PIN MUST HAVE PROBABLY 
MUST HAVE

PROBABLY DO 
NOT NEED DO NOT NEED

PS* 69 X

PROT 70 X

RUN 71 X

PRDY 72 X or XRDY/3

PINT* 73 X (INTERRUPT 
ONLY)

PHOLD* 74 X

RESET* 75 X

PSYNC 76 X (TIE TO +5V)

PWR* 77 X

PDBIN 78 X

SINTA 96 X

SWO* 97 X

SSTACK 98 X

POC* 99 X

Figure 4-1. Primary Control Signal Outputs
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Figure 4-2. Secondary Control Signal Outputs

Figure 4-3. IO Decode Logic (For E0xx)
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Figure 4-4. IEEE Standard 696 Reset Logic

RESET* signal. If you are wondering why three separate drivers are used, the answer is 
simple. If each IEEE Standard 696 bus line is terminated, tying three terminated lines to 
one bus driver probably would not work since the driver couldn't handle the load. If the 
IEEE Standard 696 bus is not terminated a single driver should work ok! An alternate 
scheme would be to drive only the RESET* line and tie the others to +5 volts. This works 
for the Tarbell controller since the three lines are effectively "or'ed" on the controller.

Probably the most important and the most interesting part of the interface is the logic 
which allows the controller to halt the CPU until the next data transfer can occur without 
conflict. As it turns out, the Tarbell controller has one fortuitous design characteristic 
resulting from use of the Western Digital 1771 controller chip - the CPU need only "halt" 
during read cycles. That is indeed a good thing since the 6502 cannot be halted during a 
write cycle. Without getting too deep into the 1771 and the Tarbell logic, this condition is 
true since the critical timing is paced by two outputs of the 1771. These two outputs 
(DRQ and INTRQ) tell the CPU when the next transfer (read or write) can be 
accomplished or when an operation has been completed. The CPU tests those signals 
be executing a read of one specific port. If the controller is not ready when that port is 
read, the IEEE Standard 696 ready line (either 3-XRDY or 72-PRDY, depending upon a 
jumper selection on the Tarbell board) is pulled down to a logic zero.

It would seem to be an easy matter then to connect that IEEE Standard 696 bus line to 
the 6502 RDY line and complete the interface. That is an easy approach but such a 
direct connection will not work, I know - I tried it that way. The reason stems from the 
design of the 6502 and is not obvious due to rather poor detail in the 6502 
documentation. The bottom line is this - the RDY line into the 6502 cannot change at just 
any random point in the CPU clock cycle. If it changes at some points in that cycle, the 
6502 will crash. Unfortunately, the 6502 spec does not tell us exactly when such a 
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change can legally take place. The safest approach is to use the trailing edge of the 1 
clock or the leading edge of 2 as the gate. The logic of Figure 4-5 accomplishes just that. 
Other flip-flops could be used with suitable logic changes.

One more aspect of the control interface remains. Recall that Figure 3-2 shows a need 
for a signal which can enable or disable the DI buffer as a function of what is enabled in 
the CPU board. Some systems may include the necessary decoding and it is thus merely 
a question of routing those signals to the interface and then creating the DIENBLE* 
signal. As an example of how to generate DIENBLE*, Figure 4-6 shows an example for 
the SYM-1.

The key to generating DIENBLE* is to know what addresses are used by RAM, ROM, or 
I/O on the CPU board. For the basic SYM-1 the conflicts which must be eliminated are 
the SUPERMON ROM which resides in the region $8000 to $8FFF, the I/O and System 
RAM which is scattered throughout the region $A000 to $AFFF, and that portion of 
System RAM which is echoed in the region $F800 to $FFFF. As the notes in Figure 4-6 
indicate, the addition of other ROMs to the SYM-1 will require additional blocks to be 
disabled. For systems other than the SYM-1 similar logic can be used.

Figure 4-5. 6502 RDY Logic
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Figure 4-6. Typical SYM-1 DIENBLE* Logic
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SECTION 5 - FINAL HARDWARE NOTES

Finally a few words for the purists who may have looked at the 1771 data sheet and 
concluded that it can not be interfaced to the 6502 without altering the system timing. The 
1771 specification says that it needs at least 150ns of data hold time during write cycles 
after the enable signals return to the false state. The 6502 is only guaranteed to provide 
30ns. Based on those numbers it should not work. The signal delays through the various 
gates and buffers between the 6502 and the 1771 do not resolve the dilemma of why it 
works, so I am left with the following, possibly incorrect but plausible explanations:

1. Some early 1771's need (on a worst case basis) as much as 150 ns.
2. Later 1771's typically need much less than 150 ns.
3. Typical 6502's provide more than 30 ns hold time. (The 6502 spec says typical is 

60 ns.)

Does all that mean I was just lucky and that another combination of 6502's and 1771's 
would not work? While that is a possibility I strongly suspect that later 1771's (especially 
the -01 versions) do not need anywhere near 150 ns even in a worst case situation. 
Moreover I have used three different 6502s (including one very early date code chip) and 
all three worked perfectly.
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